TY - JOUR
T1 - Mineralization of the Bayan Obo Rare Earth Element Deposit by Recrystallization and Decarbonation
AU - Chunwan, Wei
AU - Cheng, Xu
AU - Deng, Miao
AU - Chakhmouradian, Anton R.
AU - Smith, Martin
AU - Kynicky, Jindrich
AU - Wenlei, Song
AU - Chen, Wei
AU - Fu, Bin
PY - 2022/3/17
Y1 - 2022/3/17
N2 - The genesis of the Bayan Obo giant rare earth element (REE) deposit has been debated for several decades. Here, we report the isotopic effects of dynamic recrystallization in the H8 carbonatite, which is the principal ore carrier in the deposit. We studied fresh drill core to a depth of 1.78 km and documented the elemental and C-O-Sr isotope evolution of rock-forming dolomite during its deformation and reaction with fluids. The precursor dolomite and the products of its recrystallization differ in δ13CVienna-PeeDee Belemnite (V-PDB) (–1.09 to 2.37 vs. –3.59 to 0.79‰, respectively) and 87Sr/86Sr (0.70241–0.70394 vs. 0.70288–0.71409, respectively), and show a similar δ18Ovienna-standard mean ocean water (V-SMOW) range (10.3–16.9‰). The strong negative shift in δ13CVPDB indicates that, locally, there was as much as 40% loss of CO2 from the precursor dolomite, although most of the recrystallized dolomite experienced decarbonation on a smaller scale. Clumped monazite grains associated with apatite in paragenetically similar samples yielded variable in situ Th-Pb dates (980–340 Ma), whereas those in monomineralic veinlets give a consistent age of ~400 Ma and consistent initial Nd isotope ratios. This indicates that the wide range of dates may not represent real REE depositional events, and that the primary REE minerals deposited in the Mesoproterozoic underwent isotopic reequilibration and REE remobilization in the mid-Paleozoic. Recrystallization and decarbonation of dolomite in the H8 unit were facilitated by its reaction with subduction-derived silica- and halogen-rich fluid, genetically linked to plate-convergence processes along the northern margin of the North China craton and did not require an influx of REEs from an external source.
AB - The genesis of the Bayan Obo giant rare earth element (REE) deposit has been debated for several decades. Here, we report the isotopic effects of dynamic recrystallization in the H8 carbonatite, which is the principal ore carrier in the deposit. We studied fresh drill core to a depth of 1.78 km and documented the elemental and C-O-Sr isotope evolution of rock-forming dolomite during its deformation and reaction with fluids. The precursor dolomite and the products of its recrystallization differ in δ13CVienna-PeeDee Belemnite (V-PDB) (–1.09 to 2.37 vs. –3.59 to 0.79‰, respectively) and 87Sr/86Sr (0.70241–0.70394 vs. 0.70288–0.71409, respectively), and show a similar δ18Ovienna-standard mean ocean water (V-SMOW) range (10.3–16.9‰). The strong negative shift in δ13CVPDB indicates that, locally, there was as much as 40% loss of CO2 from the precursor dolomite, although most of the recrystallized dolomite experienced decarbonation on a smaller scale. Clumped monazite grains associated with apatite in paragenetically similar samples yielded variable in situ Th-Pb dates (980–340 Ma), whereas those in monomineralic veinlets give a consistent age of ~400 Ma and consistent initial Nd isotope ratios. This indicates that the wide range of dates may not represent real REE depositional events, and that the primary REE minerals deposited in the Mesoproterozoic underwent isotopic reequilibration and REE remobilization in the mid-Paleozoic. Recrystallization and decarbonation of dolomite in the H8 unit were facilitated by its reaction with subduction-derived silica- and halogen-rich fluid, genetically linked to plate-convergence processes along the northern margin of the North China craton and did not require an influx of REEs from an external source.
KW - Rare Earth Elements
KW - Ore Deposit
KW - Bayan Obo REE-Nb-Fe deposit
KW - Metamorphism
U2 - 10.5382/econgeo.4926
DO - 10.5382/econgeo.4926
M3 - Article
JO - Economic Geology
JF - Economic Geology
SN - 0361-0128
M1 - 4926
ER -