Abstract
Background
The high prevalence of falls due to trips and slips following stroke may signify difficulty controlling balance and adjusting foot-placement in response to the environment. We know very little about how controlling foot-placement is affected by balance requirements and the effects of stroke. Therefore, in this study the research question is how foot-placement control is affected by balance support from crutches and reducing or enlarging the base of support. By understanding how foot-placement control and balance deficits following stroke interact, rehabilitation efforts can be more effectively targeted towards the cause of poor mobility.
Methods
Young (N=13, 30±6 years) and older (N=10, 64±8 years) healthy adults and stroke survivors (N=11, 67±9 years) walked to targets on an instrumented treadmill with or without crutch support for balance. Targets were randomized to either reduce or increase the base of support in the antero-posterior (AP) or medio-lateral (ML) direction. Mean and absolute foot-placement error were measured using motion analysis. These outcomes were compared using repeated measures ANCOVA with walking speed as a covariate.
Results
Overall, stroke survivors missed more targets (9.1±2.3%, p=0.001) than young (1.0±2.5%) and older (0.2±2.1%) healthy adults (p=0.001). However, there were no significant differences between groups in foot-placement error. Crutch support reduced both AP and ML foot-placement error (p=
Significance
Stroke survivors have greater difficulty accurately adjusting steps in response to the environment. Crutch support reduces foot-placement error for all steps, but particularly when narrowing foot-placement. These results provide support for the implication of walking aids, which support balance to improve ability to adjust footplacement in response to the environment.
The high prevalence of falls due to trips and slips following stroke may signify difficulty controlling balance and adjusting foot-placement in response to the environment. We know very little about how controlling foot-placement is affected by balance requirements and the effects of stroke. Therefore, in this study the research question is how foot-placement control is affected by balance support from crutches and reducing or enlarging the base of support. By understanding how foot-placement control and balance deficits following stroke interact, rehabilitation efforts can be more effectively targeted towards the cause of poor mobility.
Methods
Young (N=13, 30±6 years) and older (N=10, 64±8 years) healthy adults and stroke survivors (N=11, 67±9 years) walked to targets on an instrumented treadmill with or without crutch support for balance. Targets were randomized to either reduce or increase the base of support in the antero-posterior (AP) or medio-lateral (ML) direction. Mean and absolute foot-placement error were measured using motion analysis. These outcomes were compared using repeated measures ANCOVA with walking speed as a covariate.
Results
Overall, stroke survivors missed more targets (9.1±2.3%, p=0.001) than young (1.0±2.5%) and older (0.2±2.1%) healthy adults (p=0.001). However, there were no significant differences between groups in foot-placement error. Crutch support reduced both AP and ML foot-placement error (p=
Significance
Stroke survivors have greater difficulty accurately adjusting steps in response to the environment. Crutch support reduces foot-placement error for all steps, but particularly when narrowing foot-placement. These results provide support for the implication of walking aids, which support balance to improve ability to adjust footplacement in response to the environment.
Original language | English |
---|---|
Pages (from-to) | 224-230 |
Number of pages | 6 |
Journal | Gait & Posture |
Volume | 76 |
DOIs | |
Publication status | Published - 19 Dec 2019 |