Abstract
Salt marsh cores are increasingly being used to study metal pollution chronologies. Salt marshes in macro-tidal estuaries, however, tend to retain a time-integrated or ‘smoothed’ signal rather than a record of discrete pollutant inputs, due to extensive sediment reworking. More generally, an accurate chronology of metal input to salt marsh sediments can be difficult to assess because of the potential early-diagenetic mobility of both the radionuclides used for dating and the contaminants of interest. A dated salt marsh core from the macro-tidal Medway Estuary, southeast England, was assessed using both total sediment metal data and partitioning data. These data indicate that both Mn and Fe have been significantly remobilised and that these diagenetic processes have slightly modified the vertical distributions of Cu, Pb and Zn. Zinc is the most diagenetically reactive followed by Cu and then Pb. However, general trends in pollutant loading can still be identified with maximum inputs occurring between ca. 1900 and 1950, decreasing towards the present day.
Original language | English |
---|---|
Pages (from-to) | 43-54 |
Number of pages | 12 |
Journal | Estuarine coastal and shelf science |
Volume | 57 |
Issue number | 1-2 |
Publication status | Published - May 2003 |
Keywords
- heavy metals
- lead-210
- Caesium-137
- sediment pollution
- diagenetic mobility
- partitioning
- Medway Estuary