Halite and stable chlorine isotopes in the Zag H3–6 breccia

J.C. Bridges, D.A. Banks, Martin Smith, M.M. Grady

Research output: Contribution to journalArticlepeer-review


Zag is an H3-6 chondrite regolith breccia within which we have studied 14 halite grains ?3mm. The purity of the associated NaCl-H2O brine is implied by freezing characteristics of fluid inclusions in the halite and EPMA analyses together with a lack of other evaporite-like phases in the Zag H3-6 component. This is inconsistent with multistage evolution of the fluid involving scavenging of cations in the Zag region of the parent body. We suggest that the halite grains are clastic and did not crystallise in situ. Halite and water-soluble extracts from Zag have light Cl isotopic compositions, ?37-Cl = -1.4 to '2.8 �. Previously reported bulk carbonaceous chondrite values are approximately ?37-Cl = +3 to +4 �. This difference is too great to be the result of fractionation during evaporation and instead we suggest that Cl isotopes in chondrites are fractionated between a light reservoir associated with fluids and a heavier reservoir associated with higher temperature phases such as phosphates and silicates. Extraterrestrial carbon released at 600 degrees Celsius from the H3-4 matrix has ?13-C = -20 �, consistent with poorly graphitised material being introduced into the matrix rather than indigenous carbonate derived from a brine. We have also examined 28 other H-chondrite falls in order to ascertain how widespread halite or evaporite-like mineral assemblages are in ordinary chondrites. We did not find any more to add to Zag (H3-6) and Monahans (H5), which suggests that such highly soluble phases were not usually preserved on the parent bodies.
Original languageEnglish
Pages (from-to)657-666
Number of pages10
JournalMeteoritics and Planetary Science
Issue number5
Publication statusPublished - 2004


Dive into the research topics of 'Halite and stable chlorine isotopes in the Zag H3–6 breccia'. Together they form a unique fingerprint.

Cite this