Abstract
Fructose is a six-carbon ketose monosaccharide. In aqueous solution and in the crystalline form, the majority of the molecules form ring structures. Of these, the six-membered pyranose form is the most abundant; however, about one-quarter of the molecules are in the five-membered, furanose form. While many of its reactions are similar to those of glucose, the presence of a ketone group in the chain, and the relative ease with which the molecule forms a five-membered furanose ring affects its chemistry and biochemistry. Specific pathways are required to enable organisms to exploit fructose in energy metabolism; these require the enzyme fructokinase and involve the conversion of fructose to glycolytic intermediates. Similarly, specific pathways for the biosynthesis of fructose and fructose-containing polymers, such as inulin, are required. Non-enzymatic glycation (fructation) by fructose has not been as extensively studied as the corresponding reactions with glucose. Nevertheless, especially in diabetic patients and fructose-rich foodstuffs, this reaction is likely to be important.
Original language | English |
---|---|
Title of host publication | Dietary Sugars |
Subtitle of host publication | Chemistry, Analysis, Function and Effects |
Publisher | Royal Society of Chemistry |
Chapter | 8 |
Pages | 115-137 |
ISBN (Electronic) | 9781849734929 |
ISBN (Print) | 9781849733700 |
DOIs | |
Publication status | Published - 2012 |