TY - JOUR
T1 - From UAV to PlanetScope
T2 - Upscaling fractional cover of an invasive species Rosa rugosa
AU - Bergamo, Thaisa Fernandes
AU - Sampaio de Lima, Raul
AU - Kull, Tiuu
AU - Ward, Raymond
AU - Sepp, Kalev
AU - Villoslada, Miguel
PY - 2023/3/11
Y1 - 2023/3/11
N2 - Invasive plant species pose a direct threat to biodiversity and ecosystem services. Among these, Rosa rugosa has had a severe impact on Baltic coastal ecosystems in recent decades. Accurate mapping and monitoring tools are essential to quantify the location and spatial extent of invasive plant species to support eradication programs. In this paper we combined RGB images obtained using an Unoccupied Aerial Vehicle, with multispectral PlanetScope images to map the extent of R. rugosa at seven locations along the Estonian coastline. We used RGB-based vegetation indices and 3D canopy metrics in combination with a random forest algorithm to map R. rugosa thickets, obtaining high mapping accuracies (Sensitivity = 0.92, specificity = 0.96). We then used the R. rugosa presence/absence maps as a training dataset to predict the fractional cover based on multispectral vegetation indices derived from the PlanetScope constellation and an Extreme Gradient Boosting algorithm (XGBoost). The XGBoost algorithm yielded high fractional cover prediction accuracies (RMSE = 0.11, R2 = 0.70). An in-depth accuracy assessment based on site-specific validations revealed notable differences in accuracy between study sites (highest R2 = 0.74, lowest R2 = 0.03). We attribute these differences to the various stages of R. rugosa invasion and the density of thickets. In conclusion, the combination of RGB UAV images and multispectral PlanetScope images is a cost-effective method to map R. rugosa in highly heterogeneous coastal ecosystems. We propose this approach as a valuable tool to extend the highly local geographical scope of UAV assessments into wider areas and regional evaluations.
AB - Invasive plant species pose a direct threat to biodiversity and ecosystem services. Among these, Rosa rugosa has had a severe impact on Baltic coastal ecosystems in recent decades. Accurate mapping and monitoring tools are essential to quantify the location and spatial extent of invasive plant species to support eradication programs. In this paper we combined RGB images obtained using an Unoccupied Aerial Vehicle, with multispectral PlanetScope images to map the extent of R. rugosa at seven locations along the Estonian coastline. We used RGB-based vegetation indices and 3D canopy metrics in combination with a random forest algorithm to map R. rugosa thickets, obtaining high mapping accuracies (Sensitivity = 0.92, specificity = 0.96). We then used the R. rugosa presence/absence maps as a training dataset to predict the fractional cover based on multispectral vegetation indices derived from the PlanetScope constellation and an Extreme Gradient Boosting algorithm (XGBoost). The XGBoost algorithm yielded high fractional cover prediction accuracies (RMSE = 0.11, R2 = 0.70). An in-depth accuracy assessment based on site-specific validations revealed notable differences in accuracy between study sites (highest R2 = 0.74, lowest R2 = 0.03). We attribute these differences to the various stages of R. rugosa invasion and the density of thickets. In conclusion, the combination of RGB UAV images and multispectral PlanetScope images is a cost-effective method to map R. rugosa in highly heterogeneous coastal ecosystems. We propose this approach as a valuable tool to extend the highly local geographical scope of UAV assessments into wider areas and regional evaluations.
KW - Unoccupied aerial vehicles
KW - Coast
KW - Invasive species
KW - Satellite
KW - Machine learning
KW - Rosa rugosa
KW - Estonia
KW - Baltic
U2 - 10.1016/j.jenvman.2023.117693
DO - 10.1016/j.jenvman.2023.117693
M3 - Article
JO - Journal of Environmental Management
JF - Journal of Environmental Management
SN - 0301-4797
ER -