Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in non-resistance trained males and elite rugby playing position

Shane M. Heffernan, G.K. Stebbings, Liam P. Kilduff, R.M. Erskine, Stephen H. Day, C. I. Morse, J.S. McPhee, C.J. Cook, B. Vance, W.J. Ribbans, S.M. Raleigh, C. Roberts, M.A. Bennett, Guan Wang, Malcolm Collins, Yannis Pitsiladis, A.G. Williams

Research output: Contribution to journalArticle

Abstract

FTO gene variants have been associated with obesity phenotypes in sedentary and obese populations, but rarely with skeletal muscle and elite athlete phenotypes. Methods: In 1089 participants, comprising 530 elite rugby athletes and 559 non-athletes, DNA was collected and genotyped for the FTO rs9939609 variant using real-time PCR. In a subgroup of non-resistance trained individuals (NT; n = 120), we also assessed structural and functional skeletal muscle phenotypes using dual energy x-ray absorptiometry, ultrasound and isokinetic dynamometry. In a subgroup of rugby athletes (n = 77), we assessed muscle power during a countermovement jump. Results: In NT, TT genotype and T allele carriers had greater total body (4.8% and 4.1%) and total appendicular lean mass (LM; 3.0% and 2.1%) compared to AA genotype, with greater arm LM (0.8%) in T allele carriers and leg LM (2.1%) for TT, compared to AA genotype. Furthermore, the T allele was more common (94%) in selected elite rugby union athletes (back three and centre players) who are most reliant on LM rather than total body mass for success, compared to other rugby athletes (82%; P = 0.01, OR = 3.34) and controls (84%; P = 0.03, OR = 2.88). Accordingly, these athletes had greater peak power relative to body mass than other rugby athletes (14%; P = 2 x 10-6). Conclusion: Collectively, these results suggest that the T allele is associated with increased LM and elite athletic success. This has implications for athletic populations, as well as conditions characterised by low LM such as sarcopenia and cachexia.
Original languageEnglish
JournalBMC Genetics
Volume18
Issue number4
DOIs
Publication statusPublished - 19 Jan 2017

Bibliographical note

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Keywords

  • RugbyGene project
  • IRX3
  • Lean mass

Fingerprint Dive into the research topics of 'Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in non-resistance trained males and elite rugby playing position'. Together they form a unique fingerprint.

  • Profiles

    Cite this

    Heffernan, S. M., Stebbings, G. K., Kilduff, L. P., Erskine, R. M., Day, S. H., Morse, C. I., McPhee, J. S., Cook, C. J., Vance, B., Ribbans, W. J., Raleigh, S. M., Roberts, C., Bennett, M. A., Wang, G., Collins, M., Pitsiladis, Y., & Williams, A. G. (2017). Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in non-resistance trained males and elite rugby playing position. BMC Genetics, 18(4). https://doi.org/10.1186/s12863-017-0470-1