Experimental Investigation of Puffing/Microexplosion in Fuel Droplets and Effects of Injection Modes on It

Zuhaib Nissar, A. Rashid A. Aziz, Morgan R. Heikal, Mhadi A. Ismael

Research output: Chapter in Book/Conference proceeding with ISSN or ISBNConference contribution with ISSN or ISBNpeer-review


Puffing/microexplosion potentially increases atomization and enables better air--fuel mixing in sprays, thereby improving combustion. In this paper, we have investigated the physics leading to puffing and microexplosion in fuel droplets and identified factors such as droplet detachment modes and droplet-air interaction that influence puffing/microexplosion. A microsyringe is used to inject droplets as small as 100 $m radius in a control volume chamber maintained at 500 textcelcius and atmospheric pressure. Droplet dynamics are captured using high-speed camera coupled with a long-distance microscopic lens using backlight illumination technique as the droplet traverses and undergoes puffing and microexplosion. In-house image processing codes are used to track droplet motion and compute its geometrical parameters, which enable us to decipher microexplosion dynamics. During this study, two significant factors were identified to cause puffing/microexplosion; thinning of droplet shell and interfacial instabilities. A general trend of increasing puffing times was observed with increasing droplet radii. The modes of detachment do affect the instabilities at the droplet surface which further amplify them and causes early puffing. Furthermore, the rate of bubble growth was amplified for the droplets traversing at higher Reynolds number.
Original languageEnglish
Title of host publicationICPER 2020
Subtitle of host publicationProceedings of the 7th International Conference on Production, Energy and Reliability
EditorsFaiz Ahmad, Hussain H. Al-Kayiem, William Pao King Soon
Place of PublicationSingapore
Number of pages14
Publication statusPublished - 4 Oct 2022
Event7th International Conference on Production, Energy and Reliability - Borneo Convention Centre, Kuching, Malaysia
Duration: 14 Jul 202016 Jul 2020


Conference7th International Conference on Production, Energy and Reliability
Abbreviated titleICPER 2020

Bibliographical note

Funding Information:
Acknowledgements The current work was carried out under the Centre for Automotive Research and Electric Mobility (CAREM), Universiti Teknologi PETRONAS (UTP), supported by the ministry of higher education Fundamental Research Grant Scheme (FRGS) (Grant FRGS/1/2017/TK10/UTP/01/2) and UTP Graduate Assistant (GA) studentship.

Publisher Copyright:
© 2023, Institute of Technology PETRONAS Sdn Bhd.


Dive into the research topics of 'Experimental Investigation of Puffing/Microexplosion in Fuel Droplets and Effects of Injection Modes on It'. Together they form a unique fingerprint.

Cite this