TY - JOUR
T1 - Evidence for a specific influence of the nitrergic pathway on the peripheral pulse waveform in rabbits
AU - Nier, B.A.
AU - Harrington, Louise
AU - Carrier, Martin J.
AU - Weinberg, P.D.
PY - 2008/1/25
Y1 - 2008/1/25
N2 - The height of the dicrotic notch between the systolic and diastolic peaks of the peripheral pulse wave, expressed as a fraction of the overall amplitude of the wave, is sensitive to nitric oxide (NO) bioactivity. This phenomenon might form the basis of a simple, non-invasive method for determining endothelial function in vivo. We assessed whether the phenomenon is specific to the NO pathway or whether other vasoactive agents have similar effects. The relative height of the dicrotic notch (RHDN) was determined by photoplethysmography in the rabbit ear. It was dose-dependently decreased by acetylcholine, a stimulator of endothelial NO synthesis, and increased by N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis. There was no effect on RHDN of the alpha-adrenergic blocker phentolamine or the beta-adrenergic blocker propranolol. The cyclo-oxygenase inhibitor indomethacin dose-dependently decreased RHDN but this effect was blocked by L-NAME, suggesting it was mediated by cross-talk with the NO pathway. Changes in RHDN appeared to be independent of heart rate and of the delay between the systolic peak and the notch, but were associated with changes in the slope of the dicrotic limb. Both L-NAME and phentolamine produced multiple diastolic peaks, indicative of wave reflections in the vasculature. These data support the view that changes in RHDN are specific to the NO pathway and provide additional information about the mechanisms involved.
AB - The height of the dicrotic notch between the systolic and diastolic peaks of the peripheral pulse wave, expressed as a fraction of the overall amplitude of the wave, is sensitive to nitric oxide (NO) bioactivity. This phenomenon might form the basis of a simple, non-invasive method for determining endothelial function in vivo. We assessed whether the phenomenon is specific to the NO pathway or whether other vasoactive agents have similar effects. The relative height of the dicrotic notch (RHDN) was determined by photoplethysmography in the rabbit ear. It was dose-dependently decreased by acetylcholine, a stimulator of endothelial NO synthesis, and increased by N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis. There was no effect on RHDN of the alpha-adrenergic blocker phentolamine or the beta-adrenergic blocker propranolol. The cyclo-oxygenase inhibitor indomethacin dose-dependently decreased RHDN but this effect was blocked by L-NAME, suggesting it was mediated by cross-talk with the NO pathway. Changes in RHDN appeared to be independent of heart rate and of the delay between the systolic peak and the notch, but were associated with changes in the slope of the dicrotic limb. Both L-NAME and phentolamine produced multiple diastolic peaks, indicative of wave reflections in the vasculature. These data support the view that changes in RHDN are specific to the NO pathway and provide additional information about the mechanisms involved.
U2 - 10.1113/expphysiol.2007.041129
DO - 10.1113/expphysiol.2007.041129
M3 - Article
SN - 0958-0670
VL - 93
SP - 503
EP - 512
JO - Experimental Physiology
JF - Experimental Physiology
IS - 4
ER -