TY - JOUR
T1 - Engineering a glucose-responsive human insulin-secreting cell line from islets of Langerhans isolated from a patient with persistent hyperinsulinemic hypoglycemia of infancy
AU - Macfarlane, Wendy
PY - 1999/11
Y1 - 1999/11
N2 - Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a neonatal disease characterized by dysregulation of insulin secretion accompanied by profound hypoglycemia. We have discovered that islet cells, isolated from the pancreas of a PHHI patient, proliferate in culture while maintaining a beta cell-like phenotype. The PHHI-derived cell line (NES2Y) exhibits insulin secretory characteristics typical of islet cells derived from these patients, i.e. they have no KATP channel activity and as a consequence secrete insulin at constitutively high levels in the absence of glucose. In addition, they exhibit impaired expression of the homeodomain transcription factor PDX1, which is a key component of the signaling pathway linking nutrient metabolism to the regulation of insulin gene expression. To repair these defects NES2Y cells were triple-transfected with cDNAs encoding the two components of the KATP channel (SUR1 and Kir6.2) and PDX1. One selected clonal cell line (NISK9) had normal KATPchannel activity, and as a result of changes in intracellular Ca2+ homeostasis ([Ca2+]i) secreted insulin within the physiological range of glucose concentrations. This approach to engineering PHHI-derived islet cells may be of use in gene therapy for PHHI and in cell engineering techniques for administering insulin for the treatment of diabetes mellitus.
AB - Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a neonatal disease characterized by dysregulation of insulin secretion accompanied by profound hypoglycemia. We have discovered that islet cells, isolated from the pancreas of a PHHI patient, proliferate in culture while maintaining a beta cell-like phenotype. The PHHI-derived cell line (NES2Y) exhibits insulin secretory characteristics typical of islet cells derived from these patients, i.e. they have no KATP channel activity and as a consequence secrete insulin at constitutively high levels in the absence of glucose. In addition, they exhibit impaired expression of the homeodomain transcription factor PDX1, which is a key component of the signaling pathway linking nutrient metabolism to the regulation of insulin gene expression. To repair these defects NES2Y cells were triple-transfected with cDNAs encoding the two components of the KATP channel (SUR1 and Kir6.2) and PDX1. One selected clonal cell line (NISK9) had normal KATPchannel activity, and as a result of changes in intracellular Ca2+ homeostasis ([Ca2+]i) secreted insulin within the physiological range of glucose concentrations. This approach to engineering PHHI-derived islet cells may be of use in gene therapy for PHHI and in cell engineering techniques for administering insulin for the treatment of diabetes mellitus.
U2 - 10.1074/jbc.274.48.34059
DO - 10.1074/jbc.274.48.34059
M3 - Article
SN - 1083-351X
VL - 274
SP - 34059
EP - 34066
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 48
ER -