TY - GEN
T1 - Energy Efficient Cloud Computing Environment via Autonomic Meta-director Framework
AU - Baker, Thar
AU - Ngoko, Yanik
AU - Tolosana-Calasanz, Rafael
AU - Rana, Omer F.
AU - Randles, Martin
PY - 2013
Y1 - 2013
N2 - The ever-increasing density in cloud computing users, services, and data centres has led to significant increases in network traffic and the associated energy consumed by its huge infrastructure, e.g. extra servers, switches, routers, which is required to respond quickly and effectively to users requests. Transferring data, via a high bandwidth connection between data centres and cloud users, consumes even larger amounts of energy than just processing and storing the data on a cloud data centre, and hence producing high carbon dioxide emissions. This power consumption is highly significant when transferring data into a data centre located relatively far from the user's geographical location. Thus, it became high-necessity to locate the lowest energy consumption route between the user and the designated data centre, while making sure the user's requirements, e.g. response time, are met. This paper proposes a high-end autonomic meta-director framework to find the most energy efficient route to the green data centre by utilising the linear programming approach. The framework is, first, formalised by the situation calculus, and then evaluated against shortest path algorithm with minimum number of nodes traversed.
AB - The ever-increasing density in cloud computing users, services, and data centres has led to significant increases in network traffic and the associated energy consumed by its huge infrastructure, e.g. extra servers, switches, routers, which is required to respond quickly and effectively to users requests. Transferring data, via a high bandwidth connection between data centres and cloud users, consumes even larger amounts of energy than just processing and storing the data on a cloud data centre, and hence producing high carbon dioxide emissions. This power consumption is highly significant when transferring data into a data centre located relatively far from the user's geographical location. Thus, it became high-necessity to locate the lowest energy consumption route between the user and the designated data centre, while making sure the user's requirements, e.g. response time, are met. This paper proposes a high-end autonomic meta-director framework to find the most energy efficient route to the green data centre by utilising the linear programming approach. The framework is, first, formalised by the situation calculus, and then evaluated against shortest path algorithm with minimum number of nodes traversed.
U2 - 10.1109/dese.2013.43
DO - 10.1109/dese.2013.43
M3 - Conference contribution with ISSN or ISBN
SN - 9781479952632
BT - 2013 Sixth International Conference on Developments in eSystems Engineering
ER -