TY - JOUR
T1 - Dimensionality Reduction for Internet of Things Using the Cuckoo Search Algorithm
T2 - Reduced Implications of Mesh Sensor Technologies
AU - Yaseen, Azeema
AU - Nazir, Mohsin
AU - Sabah, Aneeqa
AU - Tayyaba, Shahzadi
AU - Khan, Zuhaib Ashfaq
AU - Ashraf, Muhammad Waseem
AU - Ahmad, Muhammad Ovais
A2 - Lee, Sungchang
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Internet of Things (IoT) refers to the interconnection via the Internet of computing devices embedded in everyday objects, enabling them to send and receive data. These devices can be controlled remotely, which makes them susceptible to exploitation or even takeover by an attacker. The lack of security features on many IoT devices makes them easy to access confidential information, issue commands from a distance, or even use the compromised device as part of a DDoS attack against another network. Feature selection is an important part of problem formulation in machine learning. To overcome the above problems, this paper proposes a novel feature selection framework RFS for IoT attack detection using machine learning (ML) techniques. The RFS is based on the concept of effective feature selection and consists of three main stages: feature selection, modeling, and attacks detection. For feature selection, three different models are proposed. Based on these approaches, three different algorithms are proposed. A set of 40 features was included in the model, derived from combinatorial optimization and statistical analysis methods. Our experimental study shows that the proposed frame work significantly improves over state-of-the-art cyberattacks techniques for time series data with outliers.
AB - Internet of Things (IoT) refers to the interconnection via the Internet of computing devices embedded in everyday objects, enabling them to send and receive data. These devices can be controlled remotely, which makes them susceptible to exploitation or even takeover by an attacker. The lack of security features on many IoT devices makes them easy to access confidential information, issue commands from a distance, or even use the compromised device as part of a DDoS attack against another network. Feature selection is an important part of problem formulation in machine learning. To overcome the above problems, this paper proposes a novel feature selection framework RFS for IoT attack detection using machine learning (ML) techniques. The RFS is based on the concept of effective feature selection and consists of three main stages: feature selection, modeling, and attacks detection. For feature selection, three different models are proposed. Based on these approaches, three different algorithms are proposed. A set of 40 features was included in the model, derived from combinatorial optimization and statistical analysis methods. Our experimental study shows that the proposed frame work significantly improves over state-of-the-art cyberattacks techniques for time series data with outliers.
U2 - 10.1155/2020/8897026
DO - 10.1155/2020/8897026
M3 - Article
VL - 2022
JO - Wireless Communications and Mobile Computing
JF - Wireless Communications and Mobile Computing
M1 - 8897026
ER -