Diffusion and the formation of vorticity staircases in randomly strained two-dimensional vortices

M.R. Turner, A.P. Bassom, A.D. Gilbert

Research output: Contribution to journalArticle

Abstract

The spreading and diffusion of two-dimensional vortices subject to weak external random strain fields is examined. The response to such a field of given angular frequency depends on the profile of the vortex and can be calculated numerically. An effective diffusivity can be determined as a function of radius and may be used to evolve the profile over a long time scale, using a diffusion equation that is both nonlinear and non-local. This equation, containing an additional smoothing parameter, is simulated starting with a Gaussian vortex. Fine scale steps in the vorticity profile develop at the periphery of the vortex and these form a vorticity staircase. The effective diffusivity is high in the steps where the vorticity gradient is low: between the steps are barriers characterized by low effective diffusivity and high vorticity gradient. The steps then merge before the vorticity is finally swept out and this leaves a vortex with a compact core and a sharp edge. There is also an increase in the effective diffusion within an encircling surf zone. In order to understand the properties of the evolution of the Gaussian vortex, an asymptotic model first proposed by Balmforth, Llewellyn Smith and Young (J. Fluid Mech., vol. 426, 2001, p. 95) is employed. The model is based on a vorticity distribution that consists of a compact vortex core surrounded by a skirt of relatively weak vorticity. Again simulations show the formation of fine scale vorticity steps within the skirt, followed by merger. The diffusion equation we develop has a tendency to generate vorticity steps on arbitrarily fine scales; these are limited in our numerical simulations by smoothing the effective diffusivity over small spatial scales.
Original languageEnglish
Pages (from-to)49-72
Number of pages24
JournalJournal of Fluid Mechanics
Volume638
DOIs
Publication statusPublished - 2009

Bibliographical note

© Cambridge University Press, 2009

Fingerprint Dive into the research topics of 'Diffusion and the formation of vorticity staircases in randomly strained two-dimensional vortices'. Together they form a unique fingerprint.

  • Cite this