Diffuse interface modeling of a radial vapor bubble collapse

Francesco Magaletti, Luca Marino, Carlo Massimo Casciola

    Research output: Chapter in Book/Conference proceeding with ISSN or ISBNConference contribution with ISSN or ISBNpeer-review


    A diffuse interface model is exploited to study in details the dynamics of a cavitation vapor bubble, by including phase change, transition to supercritical conditions, shock wave propagation and thermal conduction. The numerical experiments show that the actual dynamic is a sequence of collapses and rebounds demonstrating the importance of nonequilibrium phase changes. In particular the transition to supercritical conditions avoids the full condensation and leads to shockwave emission after the collapse and to successive bubble rebound.

    Original languageEnglish
    Title of host publicationJournal of Physics: Conference Series
    Publication statusPublished - 3 Dec 2015
    Event9th International Symposium on Cavitation, CAV 2015 - Lausanne, Switzerland
    Duration: 6 Dec 201510 Dec 2015

    Publication series

    NameJournal of Physics: Conference Series
    ISSN (Print)1742-6588


    Conference9th International Symposium on Cavitation, CAV 2015

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.


    Dive into the research topics of 'Diffuse interface modeling of a radial vapor bubble collapse'. Together they form a unique fingerprint.

    Cite this