Comparative Study on the Macroscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector under Injection Pressures of 10 and 60 MPa

Xiang Li, Dayou Li, Jingyin Liu, Tahmina Ajmal, Abdel Aitouche, Raouf Mobasheri, Oyuna Rybdylova, Yiqiang Pei, Zhijun Peng

Research output: Contribution to journalArticlepeer-review

Abstract

To reduce particulate matter (PM) emissions from vehicles powered by gasoline direct injection (GDI) engines, increasing the fuel injection pressure has been one promising approach. However, a comparison of macroscopic characteristics between gasoline and ethanol from a GDI injector under an ultrahigh injection pressure of more than 50 MPa has not been reported. The experimental study presented in this paper can provide some new and valuable information about comparing and analyzing the macroscopic characteristics of gasoline and ethanol spray from a GDI injector in both front and side views under injection pressures of 10 and 60 MPa. The experimental results show that compared to ethanol, gasoline spray has a slight advantage in LS (penetration of whole spray), LC (penetration of core region of spray), θS (spray cone angle), and RI (irregularity of spray boundary) under both PI (injection pressure) = 10 MPa and PI = 60 MPa, which would promote a more homogeneous mixture of air and fuel. Furthermore, the advantage of gasoline in θS is more pronounced under PI = 60 MPa. At the end of injection, SS (area of whole spray) of gasoline is around 2% larger than ethanol, while its advantage in SC (area of core region of spray) can be around 5%. With the increase of PI from 10 to 60 MPa, a marked increase of RS (the ratio of SC to SS) and RI indicates that atomization and air–fuel mixture homogeneity can be significantly improved for both gasoline and ethanol spray. Besides, a minor revision to the Dent model helps achieve a significant improvement in the prediction accuracy of LS for both gasoline and ethanol spray under injection pressures of 10 and 60 MPa.
Original languageEnglish
Number of pages10
JournalACS Omega
DOIs
Publication statusPublished - 4 Mar 2022

Keywords

  • General Chemical Engineering
  • General Chemistry

Fingerprint

Dive into the research topics of 'Comparative Study on the Macroscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector under Injection Pressures of 10 and 60 MPa'. Together they form a unique fingerprint.

Cite this