An empirical comparison of machine learning techniques for chant classification

Konstantinos Kokkinidis, Theodoros Mastoras, Apostolos Tsagaris, Panagiotis Fotaris

Research output: Chapter in Book/Conference proceeding with ISSN or ISBNConference contribution with ISSN or ISBNResearchpeer-review

Original languageEnglish
Title of host publication2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST)
PublisherIEEE
Pages1
Number of pages4
ISBN (Electronic)9781538647882
ISBN (Print)9781538647899
DOIs
Publication statusPublished - 11 Jun 2018
Event7th International Conference on Modern Circuits and Systems Technologies - Thessaloniki, Greece
Duration: 7 May 20189 May 2018

Conference

Conference7th International Conference on Modern Circuits and Systems Technologies
Abbreviated titleMOCAST 2018
CountryGreece
CityThessaloniki
Period7/05/189/05/18

Keywords

  • Hidden Markov models
  • Artificial Neural Networks
  • machine learning
  • Feature extraction
  • Speech recognition
  • Heuristic algorithms
  • Machine learning algorithms

Cite this

Kokkinidis, K., Mastoras, T., Tsagaris, A., & Fotaris, P. (2018). An empirical comparison of machine learning techniques for chant classification. In 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1). IEEE. https://doi.org/10.1109/MOCAST.2018.8376596
Kokkinidis, Konstantinos ; Mastoras, Theodoros ; Tsagaris, Apostolos ; Fotaris, Panagiotis. / An empirical comparison of machine learning techniques for chant classification. 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2018. pp. 1
@inproceedings{eba282437e4149c6bf9392a79e769661,
title = "An empirical comparison of machine learning techniques for chant classification",
keywords = "Hidden Markov models, Artificial Neural Networks, machine learning, Feature extraction, Speech recognition, Heuristic algorithms, Machine learning algorithms",
author = "Konstantinos Kokkinidis and Theodoros Mastoras and Apostolos Tsagaris and Panagiotis Fotaris",
year = "2018",
month = "6",
day = "11",
doi = "10.1109/MOCAST.2018.8376596",
language = "English",
isbn = "9781538647899",
pages = "1",
booktitle = "2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST)",
publisher = "IEEE",

}

Kokkinidis, K, Mastoras, T, Tsagaris, A & Fotaris, P 2018, An empirical comparison of machine learning techniques for chant classification. in 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, pp. 1, 7th International Conference on Modern Circuits and Systems Technologies, Thessaloniki, Greece, 7/05/18. https://doi.org/10.1109/MOCAST.2018.8376596

An empirical comparison of machine learning techniques for chant classification. / Kokkinidis, Konstantinos; Mastoras, Theodoros; Tsagaris, Apostolos; Fotaris, Panagiotis.

2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2018. p. 1.

Research output: Chapter in Book/Conference proceeding with ISSN or ISBNConference contribution with ISSN or ISBNResearchpeer-review

TY - GEN

T1 - An empirical comparison of machine learning techniques for chant classification

AU - Kokkinidis, Konstantinos

AU - Mastoras, Theodoros

AU - Tsagaris, Apostolos

AU - Fotaris, Panagiotis

PY - 2018/6/11

Y1 - 2018/6/11

KW - Hidden Markov models

KW - Artificial Neural Networks

KW - machine learning

KW - Feature extraction

KW - Speech recognition

KW - Heuristic algorithms

KW - Machine learning algorithms

U2 - 10.1109/MOCAST.2018.8376596

DO - 10.1109/MOCAST.2018.8376596

M3 - Conference contribution with ISSN or ISBN

SN - 9781538647899

SP - 1

BT - 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST)

PB - IEEE

ER -

Kokkinidis K, Mastoras T, Tsagaris A, Fotaris P. An empirical comparison of machine learning techniques for chant classification. In 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE. 2018. p. 1 https://doi.org/10.1109/MOCAST.2018.8376596