Abstract
A new multi-dimensional quasi-discrete model is suggested and tested for the analysis of heating and evaporation of Diesel fuel droplets. As in the original quasi-discrete model suggested earlier, the components of Diesel fuel with close thermodynamic and transport properties are grouped together to form quasi-components. In contrast to the original quasi-discrete model, the new model takes into account the contribution of not only alkanes, but also various other groups of hydrocarbons in Diesel fuels; quasi-components are formed within individual groups. Also, in contrast to the original quasi-discrete model, the contributions of individual components are not approximated by the distribution function of carbon numbers. The formation of quasi-components is based on taking into account the contributions of individual components without any approximations. Groups contributing small molar fractions to the composition of Diesel fuel (less than about 1.5%) are replaced with characteristic components. The actual Diesel fuel is simplified to form six groups: alkanes, cycloalkanes, bicycloalkanes, alkylbenzenes, indanes & tetralines, and naphthalenes, and 3 components C19H34 (tricycloalkane), C13H12 (diaromatic), and C14H10 (phenanthrene). It is shown that the approximation of Diesel fuel by 15 quasi-components and components, leads to errors in estimated temperatures and evaporation times in typical Diesel engine conditions not exceeding about 3.7% and 2.5% respectively, which is acceptable for most engineering applications.
Original language | English |
---|---|
Pages (from-to) | 238-266 |
Number of pages | 29 |
Journal | Fuel |
Volume | 129 |
DOIs | |
Publication status | Published - 4 Apr 2014 |
Bibliographical note
© 2014 Published by Elsevier Ltd. All rights reserved.Keywords
- Droplets
- Heating
- Evaporation
- Diesel fuel
- Multi-component fuel
Fingerprint
Dive into the research topics of 'A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation'. Together they form a unique fingerprint.Profiles
-
Sergei Sazhin
- School of Arch, Tech and Eng - Professor of Thermal Physics
- Advanced Engineering Centre
Person: Academic