Hsp72, and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation

Oliver Gibson, J.A. Tuttle, Peter Watt, Neil Maxwell, Lee Taylor

Research output: Contribution to journalArticlepeer-review

Abstract

Increased intracellular heat shock protein-72 (Hsp72), and -90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90 min heat acclimation (in 40.2°C, 41.0% RH) or equivalent normothermic training (in 20°C, 29% RH.). Pearson’s product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (T rec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via RT-QPCR (n=15). Significant (p<0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r=0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r=0.714), SR (r=0.709), Trecfinal45 (r=0.682), area under the curve where Trec≥38.5°C (AUC38.5°C; r=0.678), peak Trec (r=0.661), duration Trec≥38.5°C (r=0.650) and ΔHR (r=0.511) each demonstrating a significant (p<0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5°C (r=0.729), ΔTrec (r=0.691), peak Trec (r=0.680), Trecfinal45 (r=0.678), SR (r=0.660), duration Trec≥38.5°C (r=0.629), the rate of change in Trec (r=0.600) and ΔHR (r=0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5°C and SR were combined. Training variables showed insignificant (p>0.05) weak (r<0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Original languageEnglish
Pages (from-to)1021-1035
Number of pages15
JournalCell Stress & Chaperones
Volume21
Issue number6
DOIs
Publication statusPublished - 11 Aug 2016

Bibliographical note

The final publication is available at Springer via http://dx.doi.org/10.1007/s12192-016-0726-0

Keywords

  • Heat shock proteins
  • Hyperthermia
  • Core temperature
  • Heat acclimation
  • Thermotolerance

Fingerprint

Dive into the research topics of 'Hsp72, and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation'. Together they form a unique fingerprint.

Cite this